HOMEWORK 10 MATH 430, SPRING 2014

Problem 1. Recall that group 3 of the logical axioms is generalizations of formulas of the kind $\forall x(\alpha \rightarrow \beta) \rightarrow (\forall x\alpha \rightarrow \forall x\beta)$. Write down a Δ_1 formula $\phi(v)$, such that $\mathfrak{A} \models \phi[e]$ iff e codes a formula in group 3 of the logical axioms. I.e. ϕ_e is of the form $\forall x_1, ... \forall x_n (\forall x(\alpha \rightarrow \beta) \rightarrow (\forall x\alpha \rightarrow \forall x\beta))$.

Problem 2. Write down a Δ_1 formula $\phi(v)$, such that $\mathfrak{A} \models \phi[e]$ iff e codes a sentence (i.e. a formula with no free variables).

For i < n, define the projection $P_i^n : \mathbb{N}^n \to \mathbb{N}$ to be $P_i^n(x_0, ..., x_{n-1}) = x_i$. The **primitive recursive functions** are functions $f : \mathbb{N}^k \to \mathbb{N}$ that are build up from the constant function $x \mapsto 0$, successor, projection, by applying composition, and the primitive recursive operation:

• $f(0, x_1, ..., x_{k-1}) = g(x_1, ..., x_{k-1}),$

• $f(S(y), x_1, ..., x_n) = h(y, f(y, x_1, ..., x_{k-1}), x_1, ..., x_{k-1})$

where g and f are primitive recursive.

Problem 3. Show that addition is primitive recursive. I.e. you have to show that the function $(x, y) \mapsto x + y$ can be written as above.

For a function $f: \mathbb{N}^k \to \mathbb{N}, \phi_f$ will denote the formula such that

 $\mathfrak{A} \models \phi_f[a_0, ..., a_{k-1}, b]$ iff $f(a_0, ..., a_{k-1}) = b$.

For example, if f is the addition function, then $\phi_f(x, y, z)$ is the formula x + y = z. Note that for each of the projection, successor, addition, multiplication, the corresponding formula is atomic, and therefore Δ_0 .

Problem 4. Suppose that f is defined by primitive recursion from functions g, h as above and suppose that ϕ_g, ϕ_h are Δ_1 . Write down ϕ_f in terms of ϕ_g, ϕ_h and show it is also Δ_1 .

Problem 5. Suppose that $f : \mathbb{N}^k \to \mathbb{N}$ and that ϕ_f is Σ_1 . Show that ϕ_f is also equivalent to a Π_1 formula, and therefore Δ_1 .

Hint: It is enough to show that $\neg \phi_f$ is equivalent to Σ_1 . Then use that negations of Σ_1 formulas are equivalent to Π_1 formulas.

FYI: The **partial recursive functions** are build up from the primitive recursive functions by including "minimization": if g is recursive then

 $f(x_0, ..., x_{n-1}) :=$ the least y such that $g(y, x_0, ..., x_{n-1}) = 0$

is partial recursive i.e. its domain is a subset of \mathbb{N} , but it may not always be defined. f is partial recursive iff ϕ_f is Σ_1 ; f is total recursive iff ϕ_f is Δ_1 .